11/24/2025

Building an On-Prem Litigation AI Platform: Architecture, Components, and Technical Blueprint

 


🇪🇺 1. How Litigation Lawyers Get Case Information in Europe

Litigation information usually falls into four categories:


A. Public Case Information (courts, decisions, filings)

In Europe, public court data is fragmented because each country has its own judiciary.
However, litigation lawyers typically use:

1. National Court Portals

Each country has digital case registers, e.g.:

  • Germany → Gerichtsentscheidungen, RIS (for Austria)

  • France → Legifrance (Cour de cassation + Conseil d’État decisions)

  • UK → BAILII / The National Archives

  • Netherlands → Rechtspraak.nl

  • Sweden → Domstolsverket

  • EU-wide → EUR-Lex, Curia

Lawyers check these to find:

  • Prior judicial decisions

  • Case histories

  • Docket information

  • Court rules / procedural guidelines


B. Paid Legal Research Tools

Most litigation teams rely heavily on commercial databases:

  • LexisNexis (UK, FR, DE, NL, EU case law)

  • Westlaw / Thomson Reuters

  • Wolters Kluwer (Kluwer Arbitration, Kluwer IP)

  • Beck-Online (Germany)

  • La Ley / Aranzadi (Spain)

  • Juris (Germany)

These provide:

  • Historical case law

  • Annotations & commentary

  • Key-number systems

  • Cited-by relationships

  • Precedent summaries


C. Information from Court Procedures (ongoing case)

Litigators obtain case-specific information from:

1. Court filings

  • Statements of claim

  • Defences

  • Witness statements

  • Exhibits / documentary evidence

  • Court orders

2. Opponent disclosures ("Discovery" or "Disclosure")

Varies by country.
EU systems usually use limited disclosure, except UK.

3. Client-provided materials

  • Contracts

  • Email trails

  • Business records

  • Internal memos

4. Expert reports

Engineering, medical, forensic, accounting experts may provide opinions.


D. Cross-border/EU information sources

For litigation involving Europe:

  • ECRIS → European Criminal Records Information System

  • BRIS → Business Registers Interconnection System (for company info)

  • EUIPO / EPO → Trademark/patent disputes

  • Financial institutions for AML/KYC

  • Police/Prosecutor databases (country-specific and not open to public)


🧠 2. How AI System Can Access and Use These Sources

AI cannot “scrape” or “hack” restricted systems.
But it can integrate with:

✔ Public databases (via APIs or scraping where allowed)

✔ Paid legal databases (if vendors provide API access)

✔ User-uploaded litigation materials

✔ Document Management Systems (DMS)

✔ Email / Outlook

✔ eDiscovery platforms

Ideal workflow for litigation AI:

1. Document ingestion

  • Court filings

  • Emails

  • Evidence

  • Expert reports

  • PDFs scanned → OCR → text

  • Index everything in a vector DB

2. RAG over litigation corpus

“Ask” questions like:

  • “Summarize the opposing party’s defence.”

  • “List all references to Contract A in the evidence set.”

  • “What inconsistencies exist between witness W1 and W2?”

3. Legal research integration

  • Query case law by:

    • jurisdiction

    • court level

    • specific sections of civil codes

    • cited cases

4. Chronology builder

Auto-extract:

  • dates → events → actors → documents
    Construct a case timeline.

5. Issue mapping

Use AI to classify arguments into legal issues:

  • breach of contract

  • causation

  • damages

  • procedural points

6. Argument generator

AI suggests:

  • defences

  • attack points

  • cross-examination questions

  • motions

  • settlement options

7. Hearing preparation

AI summarizes:

  • evidence bundles

  • witness contradictions

  • judge’s past decisions (if public)


🏗️ 3. Architecture for Litigation AI (Europe-friendly)

Here is a solution architecture specifically for litigation:

                



🧠 4. What AI Models You Should Use for Litigation

✔ LLM (GPT-style)

  • Reasoning

  • Summaries

  • Argument generation

  • Draft pleadings, letters

✔ Embedding Model

  • Similarity search across:

    • filings

    • evidence

    • emails

    • case law

✔ NLP Extraction Models

  • Named Entity Recognition (persons, companies, dates)

  • Event extraction (timeline creation)

  • Clause segmentation

  • Issue spotting

✔ OCR + Speech Models

  • Hearing transcripts

  • Scanned evidence

  • Audio calls

✔ CP-SAT (optional)

  • Lawyer calendars

  • Hearing scheduling

  • Evidence review workload


🇪🇺 5. European Historical Case Information: How AI Retrieves It

AI can retrieve historical litigation data by:

✔ Integrating with EU databases:

  • Curia (CJEU decisions)

  • EUR-Lex (all EU legislation and case law)

  • ECHR HUDOC (European Court of Human Rights decisions)

✔ National courts (country-specific APIs / scrapers)

  • Germany → juris / court websites

  • France → Legifrance

  • UK → National Archives (post-2022)

  • Netherlands → Rechtspraak.nl

  • Sweden → Sveriges Domstolar

✔ Commercial databases

  • LexisNexis

  • Westlaw

  • Beck-Online

  • Wolters Kluwer

✔ Firm’s own historical cases

  • Email archives

  • DMS

  • Past pleadings

  • Arbitration awards

  • Evidence bundles

  • Chronologies prepared by lawyers

AI transforms all this into a searchable knowledge graph for the case.


6. Litigation AI System Architecture 


All AI layers work together:

  • LLM → drafting, reasoning, summarization

  • RAG → evidence retrieval, case law retrieval

  • NLP models → extracting facts, entities, timelines

  • OCR/Speech → converting physical evidence to text

  • CP-SAT → scheduling + workload optimization

  • External sources → EUR-Lex, Curia, national courts

  • Evidence DB → ingested filings, disclosures, emails

All under a single orchestrated architecture.

Legal NLP & Analytics Layer

Beyond retrieval, litigation requires deeper structure extraction from documents.

Entity Extraction

Identifies:

  • Parties

  • Judges

  • Courts

  • Dates

  • Locations

  • Citations

  • Contractual references

Built from multilingual models like:

  • XLM-RoBERTa

  • Legal-NER models

  • Domain-fine-tuned transformers

Issue Classification

Categorizes paragraphs into legal issues:

  • Liability

  • Breach

  • Causation

  • Damages

  • Jurisdiction challenges

  • Procedural defects

Timeline Extraction

Automates chronological reconstruction:

  • Events

  • Deadlines

  • Hearings

  • Filings

Precedent Classification

Links paragraphs to known legal concepts using embeddings.

This layer enables rich analytics and deep insight extraction from raw evidence.



🎯 6.1 . What We Will Build (End-to-End System)

6.1.1 Case Law Search & Indexing Layer

Litigation requires referencing both national and EU case law. Since the system is on-prem:

Local Indexing of Case Law Sources

  • EUR-Lex decisions

  • Curia (CJEU) judgments

  • HUDOC (ECHR) decisions

  • National court XML feeds (where allowed)

Indexed using:

  • Elasticsearch or Apache Solr

  • Optional embeddings for semantic case law search

Cross-Referencing Engine

Automatically links:

  • paragraphs → relevant case law

  • issues → corresponding precedent

  • citations → definitions/statutes

The platform becomes a private legal research engine tailored to the firm’s jurisdictions.


6.1.2. Optimization & Scheduling Layer (CP-SAT)

Litigation involves complex scheduling:
deadlines, court dates, evidence reviews, team workloads.

The platform uses Google OR-Tools CP-SAT to generate:

  • Lawyer workload balancing

  • Hearing calendars

  • Evidence review schedules

  • Deadline conflict alerts

  • Mediation/meeting slot optimization

Constraint programming ensures mathematically optimal allocation of resources.


6.1.3. Storage & Infrastructure Layer

The system’s foundation includes multiple storage components:

Relational DB (PostgreSQL)

  • Evidence metadata

  • User/matter mapping

  • Audit logs

  • NLP extraction results

Object Storage (MinIO)

  • PDFs

  • Exhibits

  • Audio files

  • OCR output

Vector DB (Qdrant/Milvus)

  • All embeddings for evidence

  • Case law embeddings

  • Timeline vectors

Full-Text Search (Elasticsearch/Solr)

  • Case law text

  • Non-semantic document search

  • Field-level queries

GPU/CPU Compute Nodes

  • LLM inference

  • OCR & STT batch processing

  • NLP model inference

This stack is deployable via:

  • Docker Compose (dev)

  • Kubernetes (K3s or full K8s) for production


6.1.4. Security, Compliance & Governance

Litigation requires strict controls. The system integrates:

  • Matter-based access control

  • Role-based permissions

  • Multi-tenant isolation

  • Audit logging for all prompts and outputs

  • Prompt redaction policies

  • Encrypted storage (SSE, LUKS)

  • TLS for all services

  • GDPR-compliant data flows

  • Air-gapped support for highly sensitive matters

Application-level authorization is enforced using Cerbos policies.


6.1.5. Deployment Model

The platform is optimized for private infrastructure:

On-Prem Kubernetes Cluster

  • API Gateway

  • LLM inference nodes

  • Vector DB

  • Elastic cluster

  • MinIO distributed storage

  • Evidence ingestion workers

  • Scheduling microservice

  • Celery worker pool

Scaling Model

  • Horizontal scaling of ingestion workers

  • Auto-scaling of inference nodes based on qps

  • Multi-node vector DB for large firms

  • Sharded elastic index for case law

  • Maintenance mode for evidence reindexing


🔧 6.2.Tech Stack (Fully On-Prem, Fully Open Source)

Backend

✔ Python 3.11
✔ FastAPI
✔ Celery for async ingestion
✔ Gunicorn/Uvicorn

Databases

✔ PostgreSQL
✔ MinIO for evidence storage
✔ Qdrant/Milvus vector DB
✔ Elasticsearch for case law & full-text

AI Models

✔ Mistral 7B / Mixtral / Llama3 (local)
✔ BGE-large / E5-large for embeddings
✔ Tesseract or PaddleOCR
✔ whisper.cpp
✔ HuggingFace NER + classifiers

Scheduling

✔ Google OR-Tools CP-SAT

Security

✔ Cerbos (already in your project!)
✔ JWT-based auth
✔ Matter-level access control

Deployment

✔ Docker Compose (dev)
✔ K3s Kubernetes cluster (prod)
✔ Optional GPU nodes for LLMs


✅ 6.3. PROJECT STRUCTURE — COMPLETE END-TO-END SCAFFOLDING

Your final project will look like this:

rag-system/

├── cerbos-config/

├── policies/

├── src/

│   ├── api/

│   │    ├── __init__.py

│   │    ├── routers/

│   │    │     ├── chat.py

│   │    │     ├── evidence.py

│   │    │     ├── caselaw.py

│   │    │     ├── scheduler.py

│   │    │     ├── admin.py

│   │    └── main.py

│   │

│   ├── core/

│   │    ├── config.py

│   │    ├── security.py

│   │    ├── logging_config.py

│   │    ├── errors.py

│   │    ├── utils.py

│   │

│   ├── db/

│   │    ├── postgres.py

│   │    ├── qdrant.py

│   │    ├── minio.py

│   │    ├── elastic.py

│   │    └── models/

│   │         ├── evidence.py

│   │         ├── caselaw.py

│   │         ├── metadata.py

│   │         └── scheduling.py

│   │

│   ├── services/

│   │    ├── llm/

│   │    │     ├── __init__.py

│   │    │     ├── llama_cpp_server.py

│   │    │     ├── prompts/

│   │    │     │     ├── chat_prompt.txt

│   │    │     │     ├── summary.txt

│   │    │     │     ├── legal_reasoning.txt

│   │    │     │     └── instructions.txt

│   │

│   │    ├── rag/

│   │    │     ├── retriever.py

│   │    │     ├── reranker.py

│   │    │     ├── chunking.py

│   │    │     ├── context_builder.py

│   │    │     └── pipeline.py

│   │

│   │    ├── ingestion/

│   │    │     ├── pipeline.py

│   │    │     ├── ocr.py

│   │    │     ├── speech_to_text.py

│   │    │     ├── email_parser.py

│   │    │     ├── metadata_extractor.py

│   │    │     ├── embedder.py

│   │    │     └── file_router.py

│   │

│   │    ├── nlp/

│   │    │     ├── ner.py

│   │    │     ├── issue_classifier.py

│   │    │     ├── timeline_extractor.py

│   │    │     ├── precedent_classifier.py

│   │    │     └── doc_classifier.py

│   │

│   │    ├── caselaw/

│   │    │     ├── indexer.py

│   │    │     ├── parser_eurlex.py

│   │    │     ├── parser_curia.py

│   │    │     ├── parser_hudoc.py

│   │    │     └── search.py

│   │

│   │    ├── scheduler/

│   │    │     ├── optimizer.py

│   │    │     ├── constraints.py

│   │    │     └── models.py

│   │

│   │    └── audits/

│   │          ├── audit_logger.py

│   │          └── guardrails.py

│   │

│   ├── workers/

│   │    ├── celery.py

│   │    └── tasks/

│   │         ├── ingest_task.py

│   │         ├── pdf_task.py

│   │         ├── embeddings_task.py

│   │         └── caselaw_index_task.py

│   │

│   ├── tests/

│   │    ├── test_api.py

│   │    ├── test_rag.py

│   │    ├── test_ingestion.py

│   │    ├── test_llm.py

│   │    └── test_scheduler.py

│   │

│   └── __init__.py

├── docker-compose.yml

├── Dockerfile

├── Makefile

├── requirements.txt

└── README.md




Conclusion

The blueprint above outlines a production-grade, defensible, secure, and fully open-source Litigation AI Platform engineered specifically for law firms, legal departments, and government agencies in Europe.

This architecture enables:

  • Evidence-centric retrieval and analysis

  • Local LLM reasoning without cloud dependency

  • Secure case law research

  • Automated drafting and summarization

  • Timeline reconstruction

  • Intelligent scheduling

  • Full compliance with data protection and legal practice rules

With this foundation, organizations can deliver AI-powered legal workflows while maintaining full control over sensitive litigation materials.



No comments:

Post a Comment